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This talk mainly based on

Z. Brzeźniak, X. Peng, J. Zhai, Well-posedness and large
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jumps, Journal of the European Mathematical Society, 25,
3093–3176, 2023.
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Compared with the case of Gaussian noise, SPDEs driven by
jump type noise such as Lévy-type or Poisson-type
perturbations are drastically different because of the
appearance of the jump.
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BDG inequality
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time regularity
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LDP, etc.
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Introduction

Consider the two-dimensional Navier-Stokes equation

∂u(t)

∂t
− ν∆u(t) + (u(t) · ∇)u(t) +∇p(t, x) = f (t),

with the conditions
(∇ · u)(t, x) = 0, for x ∈ D, t > 0,

u(t, x) = 0, for x ∈ ∂D, t ≥ 0,

u(0, x) = u0(x), for x ∈ D,

where D is a bounded open domain of R2 with regular boundary
∂D, u(t, x) ∈ R2 denotes the velocity field at time t and position
x , ν > 0 is the viscosity, p(t, x) denotes the pressure field, f is a
deterministic external force.
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Introduction

To formulate the Navier-Stokes equation, we introduce the
following standard spaces: let

V =
{
v ∈ H1

0 (D;R2) : ∇ · v = 0, a.e. in D
}
,

with the norm

‖v‖V :=

(∫
D
|∇v |2dx

) 1
2

= ‖v‖,

and let H be the closure of V in the L2-norm

|v |H :=

(∫
D
|v |2dx

) 1
2

= |v |.
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Introduction

Define the operator A (Stokes operator) in H by the formula

Au := −PH∆u, ∀u ∈ H2(D;R2) ∩ V ,

where the linear operator PH (Helmhotz-Hodge projection) is the
projection operator from L2(D;R2) to H,

and define the nonlinear
operator B by

B(u, v) := PH((u · ∇)v),

with the notation B(u) := B(u, u) for short.
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Introduction

By applying the operator PH to each term of (5), we can rewrite it
in the following abstract form:

du(t) + Au(t)dt + B(u(t))dt = f (t)dt in L2([0,T ],V ′),

with the initial condition u(0) = u0 for some fixed point u0 in H.
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Well-Posedness

Part 1. Well-posed for 2-D SNSEs driven by multiplicative Levy
noise
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Well-Posedness

Given a probability space (Ω,F ,F = {Ft}t≥0,P), satisfying
the usual condition,

Z is a locally compact Polish space, ν is a σ-finite measure on
Z

Leb∞ is the Lebesgue measure on [0,∞)

η is a Poisson random measure on [0,∞)× Z with a σ-finite
intensity measure Leb∞ ⊗ ν
the compensated Poisson random measure

η̃([0, t]×O) = η([0, t]×O)−tν(O), ∀O ∈ B(Z ) : ν(O) <∞.
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Well-Posedness

We consider the following stochastic Navier-Stokes equations
driven by multiplicative Lévy noise

du(t) + Au(t) dt + B(u(t)) dt = f (t) dt +

∫
Z
G (u(t−), z)η̃(dz , dt),

u0 ∈ H.

Problem: Well-Posedness?
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Well-Posedness

The Well-Posedness of strong solutions in probability sense
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Well-Posedness

Assumption 1:

We assume that G : H× Z→ H is a measurable map such that

for every ~ > 0, there exists a constant C~ > 0 such that, for
all v1, v2 ∈ H with |v1|H ∨ |v2|H ≤ ~,∫

Z
|G (v1, z)− G (v2, z)|2Hν(dz) ≤ C~|v1 − v2|2H,

and it satisfies the Linear growth assumption, i.e.,∫
Z
‖G (v , z)‖2

Hν(dz) ≤ C (1 + ‖v‖2
H), ∀v ∈ H.
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Well-Posedness

Our First Result

Assume that Assumption 1 holds. Then for every u0 ∈ H and
f ∈ L2

loc([0,∞),V′) there exists a unique F-progressively
measurable process u such that

(1) u ∈ D([0,∞),H) ∩ L2
loc([0,∞),V ), P-a.s.,

(2) the following equality holds, for all t ∈ [0,∞), P-a.s., in V ′,

u(t) = u0 −
∫ t

0

Au(s) ds −
∫ t

0

B(u(s)) ds +

∫ t

0

f (s) ds

+

∫ t

0

∫
Z

G (u(s−), z)η̃(dz , ds).
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Well-Posedness

The existing results

The existing results in the literature always need other assumptions on G ,
besides Assumption 1. For example,

Z. Dong, Y. Xie, (2009) There exist measurable subsets Um, m ∈ N
of Z with Um ↑ Z and ν(Um) <∞ such that, for some k > 0,

sup
‖v‖H≤k

∫
Um

‖G (v , z)‖2
Hν(dz)→ 0 as m→∞,

Z. Brzeźniak, E. Hausenblas, J. Zhu, (2013); Z. Brzeźniak, W. Liu,
J. Zhu, (2014) It is assumed that∫

Z

‖G (v , z)‖4
Hν(dz) ≤ K (1 + ‖v‖4

H).

E. Motyl(2014) They assume that for each
p ∈ {1, 2, 2 + γ, 4, 4 + 2γ}, γ > 0, there exists a constant cp > 0
such that ∫

Z

‖G (v , z)‖pHν(dz) ≤ cp(1 + ‖v‖pH).
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Key points in the Proof.

Introduce the following notations

For T ≥ 0,

ΛT = D([0,T ],H) ∩ L2([0,T ],V).

The space ΛT endowed with the norm

‖y‖2
ΛT

= E
[

sup
s∈[0,T ]

‖y(s)‖2
H +

∫ T

0
‖y(s)‖2

V ds
]

is a Banach space.
For every m ∈ N \ {0}, θm : [0,∞)→ [0, 1] satisfying

θm ∈ C 2[0,∞);
supt∈[0,∞) |θ′m(t)| ≤ C1 <∞;

θm(t) = 1, t ∈ [0,m];
θm(t) = 0, t ≥ m + 1
θm(t) ∈ [0, 1], m < t < m + 1

where C1 is m independent.
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Key points in the Proof.

Let us put, for T ≥ 0,

ΥT (H) = D([0,T ],H) ∩ L2([0,T ],V).

It is standard that the space ΥT (H) endowed with the norm

‖y‖ΥT (H) = sup
s∈[0,T ]

‖y(s)‖H +
(∫ T

0
‖y(s)‖2

V ds
)1/2
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Key points in the Proof.

(1). For any y ∈ ΛT (H), Set

dM(t) + AM(t) dt =

∫
Z
G (y(t−), z)η̃(dz , dt),

M(0) = 0.

(2). {yn, n ∈ N} is a cauchy sequence in C ([0,T ],H)∩L2([0,T ],V ),
where

y ′n+1(t) + Ayn+1(t) + θm(‖yn + M‖ΥH
t

)φδ(‖yn + M‖L2([0,t];V))

B(yn(t) + M(t), yn+1(t) + M(t)) = f (t), t ∈ [0,T ];

yn+1(0) = u0.
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Key points in the Proof.

This implies the existence of the following deterministic PDEs

X ′(t) + AX (t) + θm(‖X + M‖ΥH
t

)φδ(‖X + M‖L2([0,t];V))B(X (t) + M(t))

= f (t),

X (0) = u0.

and

X ′(t) + AX (t) + θm(‖X + M‖ΥH
t

)B(X (t) + M(t))

= f (t),

X (0) = u0.

(3). By (1) and (2) , for any y ∈ ΛT (V), there exists a uniqueness
element u = Φy such that u ∈ D([0,T ],V) ∩ L2([0,T ],D(A)) and

du(t) + Au(t) dt + θn(‖u‖ΥV
t

)B(u(t)) dt = f (t) dt

+

∫
Z

G (y(t−), z)η̃(dz , dt), u(0) = u0.



Outline Introduction Well-posed for 2-D SNSEs driven by multiplicative Levy noise Wentzell-Freidlin type large deviation principles for 2-D SNSEs driven by multiplicative Levy noise

Key points in the proof

Lemma

Assume that n ∈ N. Assume that for all u0 ∈ H and
f ∈ L2([0,T ];V′) and y ∈ ΛT (H), there exists an element
u = Φy ∈ ΛT (H) satisfying

du(t) + Au(t) dt + θn(‖u‖Υt(H))B(u(t)) dt

= f (t) dt +

∫
Z
G (y(t−), z)η̃(dz , dt),

u(0) = u0.

Then there exists a constant Cn > 0 such that

‖Φy1 − Φy2‖2
ΛT (H) ≤ CnT‖y1 − y2‖2

ΛT (H), ∀y1, y2 ∈ ΛT (H).

Remark. The above result is not true without the smoothing
function θn.
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Key points in the proof

(4). There exists a unique solution to the following SPDE

dun(t) + Aun(t) dt + θn(‖un‖ΥV
t

)B(un(t)) dt

= f (t) dt +

∫
Z
G (un(t−), z)η̃(dz , dt),

un(0) = u0.
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Well-Posedness

The Well-Posedness of strong solutions in PDE sense
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Well-Posedness

Assumption 2. G : V × Z→ V is a measurable mapping. There
exists a constant C > 0 such that

(G-V1) (Lipschitz)∫
Z
‖G (v1, z)− G (v2, z)‖2

Vν(dz) ≤ C‖v1 − v2‖2
V, v1, v2 ∈ V,

(G-V2) (Linear growth)∫
Z
‖G (v , z)‖2

Vν(dz) ≤ C (1 + ‖v‖2
V), v ∈ V.

(G-H2) (Linear growth)∫
Z
‖G (v , z)‖2

Hν(dz) ≤ C (1 + ‖v‖2
H), ∀v ∈ H.
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Well-Posedness

Our Second Result

Assume that Assumption 2 holds, u0 ∈ V and
f ∈ L2

loc([0,∞),H). Then there exists a unique F-progressively
measurable process u such that

(1) u ∈ D([0,∞),V) ∩ L2
loc([0,∞),D(A)), P-a.s.,

(2) the following equality in V′ holds, for all t ∈ [0,∞), P-a.s.:

u(t) = u0 −
∫ t

0
Au(s) ds −

∫ t

0
B(u(s)) ds +

∫ t

0
f (s) ds

+

∫ t

0

∫
Z
G (u(s−), z)η̃(dz , ds).

The proof is similar to the first result.
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Well-Posedness

The existing results

H. Bessaih, E. Hausenblas, P.A. Razafimandimby(2015)
The authors considered the existence and uniqueness of
solutions defined as above for stochastic hydrodynamical
systems with Lévy noise, including 2-D Navier-Stokes
equations.

They assumed that the function G is globally Lipischitz in the
sense that there exists K > 0 such that for p = 1, 2,∫
Z
‖G (v1, z)−G (v2, z)‖2p

V ν(dz) ≤ K‖v1− v2‖2p
V , v1, v2 ∈ V,

and∫
Z
‖G (v1, z)−G (v2, z)‖2p

H ν(dz) ≤ K‖v1− v2‖2p
H , v1, v2 ∈ H.
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Generalizations

Peng, Yang and Zhai, 2022, EJP

We prove similar results for stochastic 2D hydrodynamics type
systems with multiplicative Lévy noises, including stochastic 2D
Navier Stokes equations, 2D stochastic Magneto-Hydrodynamic
equations, 2D stochastic Boussinesq model for the Bénard
Convection, 2D stochastic Magnetic Bérnard problem, 3D
stochastic Leray α-Model for Navier-Stokes equations, and several
stochastic Shell models of turbulence.

∫
Z
‖G (v1, z)− G (v2, z)‖2

Hν(dz)

≤ L1‖v1 − v2‖2
H + L2‖v1 − v2‖2

V, ∀v1, v2 ∈ V,
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LDP

Part 2. Wentzell-Freidlin type large deviation principles for 2-D
SNSEs driven by multiplicative Levy noise
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Mumford 1 2 :
”...... A major step in making the equation more relevant is to

add a small stochastic term. Even if the size of the stochastic term
goes to 0, its asymptotic effects need not. It seems fair to say that
all differential equations are better models of the world when a
stochastic term is added and that their classical analysis is useful
only if it is stable in an appropriate sense to such perturbation”

1D.Mumford, The dawning of the age of stochasticity. Mathematics:
frontiers and perspectives. Amer. Math. Soc., Providence, RI, 197–218, 2000.

2David Mumford: 1974 Fields medal and 2008 Wolf medal.
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LDP

We consider SNSE driven by the multiplicative Lévy noise
duε(t) = −Auε(t)dt − B(uε(t))dt + f (t)dt +

√
εσ(t, uε(t))dW (t)

+ ε

∫
Z
G (uε(t−), z)Ñε−1

(dtdz);

uε(0) = u0 ∈ H.

W (·) is a Wiener process.

Nε−1
is a Poisson random measure on [0,T ]× Z with a

σ-finite intensity measure ε−1λT ⊗ ν,

λT is the Lebesgue measure on [0,T ] and ν is a σ-finite
measure on Z .

Ñε−1
([0, t]× O) = Nε−1

([0, t]× O)− ε−1tν(O), ∀O ∈ B(Z )
with ν(O) <∞, is the compensated Poisson random measure.

σ, G are measurable mappings specified later.
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LDP

As the parameter ε tends to zero, the solution uε will tend to the
solution of the following deterministic Navier-Stokes equation

du0(t) + Au0(t)dt + B(u0(t))dt = f (t)dt, with u0(0) = u0 ∈ H.
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LDP

Problem: We shall investigate deviations of uε from u0, as ε
decreases to 0.

Y ε =
(
uε − u0

)
/a(ε),

where a(ε) is some deviation scale which strongly influences the
asymptotic behavior of Y ε.

(1) The case a(ε) = 1 provides some large deviations estimates.

(2) If a(ε) is identically equal to
√
ε, we are in the domain of the

central limit theorem (CLT for short).
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LDP

(3) To fill in the gap between [a(ε) = 1] and [a(ε) =
√
ε], it is the

so-called moderate deviation principle (MDP for short).

That is when the deviation scale satisfies

a(ε)→ 0, ε/a2(ε)→ 0 as ε→ 0.
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LDP

Definition LDP

E = D([0,T ];H), equipped with the Skorokhod topology, is a
Polish space, denoted its Borel σ-field B(E).

Rate function
A function I : E → [0,∞] is called a rate function on E , if for
each M <∞, the level set {x ∈ E : I (x) ≤ M} is a compact
subset of E .
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LDP

Definition LDP

LDP
(uε − u0) obeys an LDP on E with rate function I , if it holds
that

(a) for each closed subset F of E ,

lim sup
ε→0

ε logP
(
uε − u0 ∈ F

)
≤ − inf

x∈F
I (x);

(b) for each open subset G of E ,

lim inf
ε→0

ε logP
(
uε − u0 ∈ G

)
≥ − inf

x∈G
I (x).
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We establish a Freidlin-Wentzell LDP on space ΥT (V), here

ΥT (V) := D([0,T ],V) ∩ L2([0,T ],D(A)).

The space D([0,T ],V) is equipped with the Skorohod topology.

Theorem

Assume that Assumption 2 holds, f ∈ L2([0,T ];H), and u0 ∈ V.
Then the family {uε}ε>0 satisfies an LDP on ΥV

T with the good
rate function I defined by

I (k) := inf
{
LT (g)a : g ∈ S, ug = k

}
, k ∈ ΥV

T ,

where for g ∈ S, ug is the unique solution of the following PDE

dug (t)

dt
+ Aug (t) + B(ug (t)) = f (t) +

∫
Z

G (ug (t), z)(g(t, z)− 1)ν(dz),

ug (0) = u0.

aLT (g) :=
∫ T

0

∫
Z

(
g(t, z) log g(t, z)− g(t, z) + 1

)
ν(dz) dt.
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LDP

Large deviation results for 2-D SNSEs:

Wiener Process:

S. Sritharan, P. Sundar, Stochastic Process. Appl. (2006)

Large deviation for the two dimensional Navier-Stokes
equations with multiplicative noise
I. Chueshov and A. Millet, Appl. Math. Optim. (2010)

Stochastic 2-D Hydrodynamics Type Systems: Well Posedness
and Large Deviations.
R. Wang, J. Zhai, T. Zhang, (JDE 2015)
A moderate deviation principle for 2-D stochastic
Navier-Stokes equations.(Also CLT)

Levy Process:

T. Xu, T. Zhang, J. Funct. Anal. 257(2009)

They dealt with the additive Lévy noise
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LDP

J. Zhai, T. Zhang, (Bernoulli 2015)
Large deviations for 2-D stochastic Navier-Stokes equations
driven by multiplicative Levy noises

Z. Dong, J. Xiong, J. Zhai, T. Zhang, (JFA 2017)
A moderate deviation principle for 2-D stochastic
Navier-Stokes equations driven by multiplicative Levy noises

J. Xiong, J. Zhai, (Bernoulli 2018)
Large deviations for locally monotone stochastic partial
differential equations driven by Levy noise

Z. Brzeźniak, X. Peng, J. Zhai, (JEMS,2023)
Well-posed and large deviations for 2-D Stochastic
Navier-Stokes equations with jumps
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THANKS!
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